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Abstract—It becomes a challenge to design an efficient load 

balancing method via live virtual machine (VM) migration 

without degrading application performance. Two major 

performance impacts on hosted applications that run on a VM 

are the system load balancing degree and the total time till a 

balanced state is reached. Existing load balancing methods 

usually ignore the VM migration time overhead. In contrast to 

sequential migration-based load balancing, this paper proposes 

using a network-topology aware parallel migration to speed up 

the load balancing process in a data center. We transform the 

VM migration-based multi-resource load-balancing problem into 

a minimum weighted matching problem over a weighted 

bipartite graph. By obtaining the minimum weighted matching 

pairs from the Hungarian method, we parallel migrate multiple 

VMs from overloaded hosts to underutilized hosts to reduce the 

time reaching a load balanced state. In addition, since a major 

cause of energy inefficiency in a cloud data center is the idle 

power wasted when servers run at low utilization, cloud 

operators can turn off those low utilized servers after using VM 

migration to empty out their workloads. Therefore, we can 

extend our load balancing algorithm to force low utilized servers 

to empty out their VMs simultaneously. The experimental results 

show that our algorithm not only obtains a compatible multi-

resource load balancing performance but also improves the 

balanced time which results in at most a 10% throughput gain by 

assuming a large batch application running on all VMs. With 

energy aware load balancing, the power saving is up to 38% 

without degrading the applications' completion time. 

I. INTRODUCTION 

Cloud data centers employ virtualization-based technology 
to consolidate hardware resource usage to provide application 
hosting for multiple service providers. In a cloud data center, 
thousands of commodity computers work in parallel to host 
virtual machines (VMs) that support different applications. The 
CPU speed, memory size, and network bandwidth of different 
commodity computers are widely heterogeneous. Besides, a 
physical host may run multiple services with different types of 
resource demands. Without proper allocation, the loads of 
different resources may become unbalanced among different 
physical hosts. Even with careful resource provisioning at the 
beginning, due to dynamic arriving and leaving of running 
workload, the cloud system could still become a load 
unbalanced state later. Thus, a cloud system may have quite a 
few overloaded hosts while lots of underutilized hosts are still 
available. 

Load-balancing mechanisms improve system performance 
by reducing resource contention (e.g., CPU, network 

bandwidth, and memory) on overloaded hosts. More 
importantly, it can prevent higher hardware failure rate in 
overloaded hosts. 

Load-balancing mechanisms are effectively studied in 
many research areas, including distributed systems, web 
servers, and cloud systems, to maximize resource utilization 
and minimize the variance of the load of multiple servers [1] [2] 
[3] [4] [5] [6] [7] [8] [9] [10] [11]. While most recent research 
focuses on the VM migration as a mean to achieve load 
balancing in cloud systems [4] [5] [6] [7] [8] [9] [10] [11] , few 
of them focus on the impact of the total time required to reach 
system balance. Normally, the existing load balancing 
algorithms search for a VM to instantiate a VM migration from 
overloaded hosts to under-loaded hosts. They usually select and 
start the next VM migration when the previous migration 
completely terminates. These schemes aim at achieving an 
egalitarian state without considering the waiting time for other 
hosts to offload their workload. This paper calls such schemes 
“sequential migration-based load balancing methods.” These 
methods could lead to all overloaded hosts taking a long time 
to offload their workload. Consequently, the applications 
running on those overload hosts will contend for the resources 
for a longer time. Therefore, users could experience application 
performance degradation. 

In this work, we study the multi-resource load balancing 
problem for a cloud data center with heterogeneous hardware 
capacity. Compared with sequential migration-based load 
balancing methods, this paper proposes a parallel VM 
migration approach that focuses on minimizing the joint multi-
resource imbalance and the time it takes to reach a balanced 
state. In addition, the migration delay due to the data center 
networks’ architecture is considered, especially if the migration 
pairs are between machines with a large hop distance. In order 
to improve the application performances, this paper minimizes 
the time till a balanced state is reached by migrating VMs 
between independent pairs of hosts while considering the 
underlying network topology. To be specific, this paper models 
the load balancing problem with a weighted bipartite graph 
(WBG). The over- and underutilized hosts in a data center are 
selected as two disjoint sets of vertices: Trigger (TR) node and 
Non-Trigger (NTR) node sets. A physical host is said to be a 
trigger node if its resource utilization exceeds a system 
threshold on any dimensions of resources; otherwise, it is a 
non-trigger node. Each edge between the two sets is designated 
with a weight according to the multi-resource requirements of 
VMs, the various resource capacities of the hosts, and the 
network cost between two hosts. By solving the minimum 



weighted matching problem using the Hungarian method [12], 
this paper could migrate a set of VMs between over- and 
underutilized hosts in parallel. 

In addition, to maintain a large-scale computational 
environment, a cloud data center needs a lot of hosts running 
persistently and a cooling system to maintain a working 
temperature. In general, the increased number of running hosts 
and the cooling system consume large amounts of power. 
However, a major cause of energy inefficiency in a cloud data 
center is the idle power wasted when some servers run at low 
utilization. Recent researches such as [13] [14] are dedicated to 
saving energy by moving VMs from underutilized hosts to 
other hosts and turning off those hosts without any workloads. 
These researches usually transform the energy saving issue to a 
classical bin-packing problem. Physical hosts are viewed as 
individual bins and the workload as an item. The energy saving 
problem is then modeled as the problem of filling all items into 
bins while the goal is to minimize the number of bins.  

In such a straightforward modeling, the load balancing 
problem still exists. First, due to heterogeneous machine 
capacity and various VM workloads, the bin-packing could still 
involve migrating VMs out of overloaded hosts. Since item 
size (i.e. size of VM resource requirement) is varied, it may 
still involve selecting an appropriate host to receive a migrating 
item (i.e. VM) instead of simply migrating any VM into any 
host to yield a better packing result. Therefore, as mentioned 
earlier, migrating many VMs out of hosts could exhibit a 
sequential migration. As a result, it may take a long time for 
selected hosts to empty out their workload before they can be 
turned off. This paper augments our parallel migration-based 
load balancing algorithm to migrate VMs simultaneously to 
quickly turn as many hosts off as possible while preserving the 
system load balancing state. In order to turn off selected hosts, 
our algorithm marks these hosts as triggered nodes and they 
remain triggered nodes until all tenant VMs have been 
migrated. 

The experimental results show that our algorithm achieves 
a compatible multi-resource load balancing while improving 
the balancing time, which results in at most a 10% running 
application’s throughput gain compared to conventional 
algorithms which perform load balancing in a sequential 
manner. With energy aware load balancing, the amount of 
power saved is up to 38% without degrading the applications' 
completion time. 

The rest of this paper is organized as follows. Section II 
describes related works. Section III elaborates the motivation 
behind this work. Section IV describes the network-aware 
bipartite matching load balancing algorithm in detail. Section V 
describes the network-and-energy-aware load-balancing 
algorithm. Experimental results of the simulation and an 
evaluation will be presented in section VI. Finally this paper 
concludes with some remarks in section VII. 

II. RELATED WORKS 

A. Load Balancing Methods 

A number of researches have proposed load balancing 
methods [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] for cloud 
data center. Most of these works focus on balancing the 
resource requirement of VMs on physical machines. Based on 

their algorithms, they migrate either single or multiple VMs in 
each round of the load balancing procedure. These load-
balancing schemes for cloud computing measure the load on 
physical hosts in different ways. However, none of their efforts 
address the multi-resource load balancing issue [1] [2] [3]. 
Zhao and Huang [2] use the number of VMs of a host as their 
load measurement. Recent study [3] mimics the animal 
behavior of honeybees foraging and scouting to harvest foods 
for load-balancing. Though the scheme works for a dynamic 
workload, they assume each host is homogeneous and deal 
with single resource only. And yet [4] considers the multi-
resource demands of VMs and heterogeneous capacity in each 
host. They propose a load balancing method called VectorDot 
(VD). Their goal is to bring overloaded hosts below their 
threshold by migrating one or more VMs sequentially. They 
extend Toyoda heuristic for a single knapsack problem to solve 
a multidimensional knapsack problem. VD treats a VM in an 
overloaded host as an item to be placed into an appropriate 
node. Then, this VM is migrated to the selected destination 
node. This procedure is repeated until no more overloaded 
hosts. From a practical perspective VM migration takes a while 
to finish. Thus migrating VMs in a one-by-one manner could 
take a long time till system balancing, and thereby exacerbating 
the running applications that are hosted on overloaded 
machines. 

Recent works that consider VM migration overhead for 
load balancing can be found in [7] [8] [9] [10] [11]. Since a 
cloud system involves cloud operators and network operators 
with different goals in mind, [7] studies the problem of making 
both objects meet. At one hand, the cloud operators wish to 
assign a number of VMs to some selected hosts for the purpose 
of meeting the VM scheduling deadline. Thus, the cloud 
operators wish to pair for each VM with a destination host that 
minimizes the migration time. On the other hand, the network 
operators wish to minimize the network bandwidth. To make 
both ends meet, [7] models a balanced stable matching problem 
for both requirements of cloud operators and network operators. 
VM migration overhead is derived from the network topology 
and the transfer memory volume. However, their matching 
does not consider the bandwidth of NIC sharing at the 
destination host. Thus they could migrate several VMs from 
multiple distinct hosts to an identical host which could degrade 
into the sequential migration. In contrast, we consider finding 
independent pairs between the end hosts for load balancing via 
parallel migration.  

Recent works [8] [9] conduct a number of experiments on 
the cloud testbed to study the factors that influence VM 
migration time and impact of live migration on application 
performances. In [8], they show that VM migration could 
contend resource with the running workload on the source and 
destination host, especially as the number of concurrently 
migrating VMs between one source and one destination host 
increases. Hence they study the problem of selecting a number 
of VMs to migrate that minimize the resource contention 
overhead. [8] models a VM migration as processes that  run at 
source and destination hosts. They show that by carefully 
assigning VM they could reduce VM migration overhead. 
Though, it is difficult to formulate the impact of migration time 
given different combination of jobs and VM migrations 
running on machines with various resource configurations. As  



 

the cloud system gets larger, the resource contention model 
would become more difficult to build. [9] shows that the 
destination host CPU reserved for the migration process has 
little to do with migration time. The source host CPU impacts 
the migration time when the host is overloaded, especially 
when its memory dirty rate is high. However, they only suggest 
a direction to balance multi-resource load without relating it to 
the performance overhead incurred by concurrent VM 
migrations. In contrast to [8] [9], this paper performs an 
experimental study of live migrations and application 
throughputs with multiple, concurrent VM migrations (in next 
section). These experiment results provide a motivation to a 
new parallel migration-based load balancing algorithm.  

Recent studies [10] [11] formulate the load balancing 
problem with migration overhead being the distance measured 
by the number of hops in the Internet. Nevertheless these 
schemes often do not consider the heterogeneous capacity of 
multi-resource in each host. In addition, the concurrent 
migration approach they adopt still has a chance to migrate 
multiple VMs to an identical destination host or from a single 
source to multiple distinct destinations. 

B. Energy Issues 

Considering the fact that a large percentage of power 
consumption comes from the static power from those 
underutilized machines, this paper considers migrating all VMs 
out from those hosts.  Thus those hosts can be switched off to 
reduce total power consumption in a cloud system. The power 
consumption of a running host consists of two parts: static 
power and dynamic power.  Studies show that on average an 
idle server consumes approximately 70% of the total power 
consumption. To deal with energy issues, this paper adopts the 
power model described in [14] in equation (1) .  


max max( ) (1 )P l k P k P l       

Pmax denotes the maximum power consumed in a host when its 
CPU utilization is 100%; k is the fraction of static power and is 
approximately 0.7; and l is the current CPU utilization which 
determine the dynamic power consumption. 

In [13], the energy issue is transformed to a traditional bin-
packing problem. Physical hosts are viewed as individual bins 
and the workload as an item. The energy saving problem then 
is modeled as the problem of filling all items into bins while 
minimizing the number of bins. Although this paper takes a 
similar approach to reducing the number of running hosts, it 
further focuses on preserving the system load balanced state. 

 

III. MOTIVATION 

Even through the modern cloud administrators migrate 
multiple VMs concurrently, if the hosts of migration pairs do 
not choose carefully, concurrent migration still has a chance to 
degrade into sequential migration. The worst case circumstance 
in load balancing is to migrate many VMs from different hosts 
to one under-utilized host (many-to-1) concurrently. In order to 
turn off a host in energy saving, one common example occurs 
when we migrate all VMs from one host to many hosts (1-to-
many) concurrently. In this section, we measure the real 
application performance and compare parallel migration with a 
range of many-to-1 and 1-to-many concurrent migration. The 
experiment is conducted on a real testbed based on Xen [16]. In 
this system, we reserve the network bandwidth as 100 Mbps at 
each host NIC for VM migration. Each VM runs crypto.rsa 
application in the SPECjvm [17]. VMs serving the same 
application type are allocated with identical resources. During 
live migrations, applications running on VMs persist in 
execution with small interruption time compared with non-live 
migration [16]. We first measure the time taken for each 
individual VM during concurrent migration by observing 
different combinations of VM pairs. Then we observe the 
application performance for an increasing number of 
concurrently migrating VMs. A conclusion that leads to the 
work in this paper follows thereafter. Each evaluation is an 
averaged result for 10 times.  

Fig. 1 shows the individual VM migration time for 
migrating two VMs with increasing total migrating memory 
volume. Consistently with [8], as each VM memory size 
increases from 256 to 1280 MB (where the total migrated size 
increases from 512MB to 2048MB, respectively,) VM 
migration time takes a linearly increasing proportional to 
transfer memory volume. As two distinct hosts migrate to a 
single host (i.e., 2-to-1), it suffers from a linearly increasing 
time for both VM migrations since the network capacity at the 
destination host’s NIC is shared by the two migrations. When 
migrating from a single host to two distinct hosts (i.e., 1-to-2), 
one VM does not start migrating until another finishes 
migrating. This is the mechanism implemented by the Xen 
platform

1
 which would start VM migration after the previous 

one finishes, that behaves the same as sequential migration in  
 
1
Xen provides migrating modules for synchronous and asynchronous 

modes. The only difference is whether the migrating thread immediately returns 
to user thread or returns until migration completes. Both implementations 
migrate VMs in sequential manner even they are issued concurrently. 

   
Fig. 1. Migration time vs.  VM memory size Fig. 2. Total elapsed migration time vs. number of 

VMs  
Fig. 3. Number of completed operations vs. number of 

VMs 



the case of migrating two VMs from one host to the other host. 
As opposed to the above cases, the parallel VM migration 
scheme (i.e., 2-to-2) achieves the smallest migration time 
without suffering from additional network delays. 

Given that migrating two VMs could degrade into 
sequential migration in the 2-to-1 and 1-to-2 cases, we would 
like to know the performance impact of migrating multiple 
VMs concurrently in a larger scale, especially in an overloaded 
system environment. We assume that an overloaded 
environment consists of overloaded hosts and idle hosts. In the 
following experiments we assume that all the VMs run on 
those overloaded hosts. In such an overloaded environment, the 
workload on one VM contends resources with all other VMs 
resident on the same host. Thus the time until a VM is migrated 
to an idle host could affect the application performance running 
on that VM.  

We study the impact of total migration time of different 
number of migrating VMs on the performance of workload on 
the migrating VMs, where the total migration time denotes the 
longest completion time for migrating a number of VMs. In the 
many-to-1 case, we concurrently migrate 2, 3 and 4 VMs each 
from 2, 3 and 4 overloaded hosts to one idle host. On the 
contrary, the 1-to-many case exhibits that 2, 3 and 4 VMs in 
one overloaded host are migrated to 2, 3 and 4 idle hosts 
respectively. The 1-to-1 case let 2, 3 and 4 VMs  migrate from 
an overloaded host to an idle host. Parallel migration 
independently migrate 2, 3, and 4 VMs each from 2, 3 and 4 
overloaded hosts to 2, 3 and 4 idle hosts. Each VM migration is 
instantiated by our controller 1 minute after the workload starts 
running. During VM migration, we measure the application 
performance obtained on migrating VMs. In order to measure 
the impact on the running application, the iteration duration 
parameter of the crypto.rsa application is set to last after all 
VMs finish migrating. This parameter ensures that the VM 
continues to demand resources during the VM migration. The 
baseline performance is approximately 108 operations under 
baseline single core CPU at 2.67GHz. 

Fig. 2 shows the total migration time under 2, 3 and 4VM 
migrations. As the number of VM migrations increases, the 
completion time of migration increases as in many-to-1, 1-to-
many and 1-to-1 cases. However, the total migration time of 
parallel migration remains almost the same. It’s the smallest 
among the other cases. Consistently with [8], as the total 
transfer memory size of concurrent VM migrations increases, 
the total migration time also increases. Given that the total 
transfer volume of memory between two hosts is fixed, they 
observe that the total migration time increases as the number of 
concurrent VM migrations increases. This is due to the 
resource contention between those migration processes and 
running workload on the source and destination host. In order 
to improve application performance, they study the VM 
assignment problem by selecting different pairs of VM 
migrations to lower the impact of resource contention. 

Fig. 3 shows the total number of completed operations of 
crypto.rsa observed on migrating VMs. The case of a single 
host to multiple distinct hosts (1-to-many) completes 4%, 9%, 
and 10% fewer operations than parallel migration, as the 
number of concurrently migrating VMs increase from 2, 3 to 4. 
Although the many-to-1 case experiences a smaller total 
migration time than that of the 1-to-many as shown in Fig. 2, 

the number of completed operations of many-to-1 decreases 
more severely than that of 1-to-many with 15%, 34%, and 61% 
fewer operations done than parallel migration. Further, the 
many-to-1 case is also close to the worst case without 
migration (i.e. no load balancing). The 1-to-many case 
completes more operations than the case of many-to-1 where it 
suffers from a longer migration delay for each individual VM 
as shown in the 2-to-1 case in Fig. 1. Among them, parallel 
migration shows the highest workload completion rate. These 
observations suggest that maneuvering parallel VM migrations 
is feasible to improve application performances. 

IV. NETWORK-AWARE BIPARTITE MATCHING LOAD-

BALANCING ALGORITHM 

Load balancing for multi-resource requirements while 
considering heterogeneous resource capacity has been a 
challenging problem, especially in a large scale cloud hosting 
environment. In this paper, we study the load balancing 
problem for a cloud data center. Especially, we try to reduce 
the time taken for a cloud data center to reach its load balance 
state. Since a live migration of VM takes some time to 
accomplish, sequentially migrating VMs from trigger nodes to 
non-trigger nodes may take a long time to offload workload for 
overload hosts. Further, the migration delay between two hosts 
varies according to the underlying network architecture and the 
transfer volume of VM memory. Thus, we propose a Network-
Aware Bipartite matching (NABM) load balancing algorithm. 
This paper first transforms the load-balancing problem into a 
minimum weighted matching problem. According to the 
minimum weighted matching obtained from the Hungarian 
method, this paper migrates VMs from overloaded hosts to 
underutilized hosts in parallel. Furthermore, this paper adds the 
hop distance between source and destination hosts to reflect 
impact of the network to the VM migration time. By reducing 
the VM migration time, it can shorten the time for a cloud 
system to reach its load balanced state. 

A. Preliminary 

The notations for use in NABN will be defined as follows. 

Let  1 2, , , mhH h h  and  1 2, ,, vV vm vm vm denote a set 

of hosts and VMs in a cloud system, respectively, with an 

existing allocation :A V H where ( )iA vm denotes the host 

where vmi resides. The resource consumption for a VM vmβ is 

  1,2, ,i i nS s    ∣  . The input to our load balancing 

algorithm includes a capacity value, a current utilization value 

and a suggested threshold fraction between 0 and 1. 

Let  | {1,2,..., }i

aaC c i n  and     0,1 , 1,2, ,a

i i

a aU u u i n   ∣
 

denote the vectors of capacity and resource utilization along n 

dimensions of resources for a Host ha, respectively. 

 | [0,1], {1,2,..., }i iT t t i n   denotes the vector of system 

threshold along each dimension of resources. Our load 

balancer will maintain the usage of the resources below those 

thresholds. Moreover, the available capacity for host ha in any 

dimension of resources can be represented as in (2). 

     1,2,1 , ,i i i i

a a a a aF f f u c i n     ∣  



B. Bipartite Matching Load-Balancing 

Similar to [4] , NABM collects multi-dimensional resource 

utilization information of hosts and resource requirements of 

VMs as input. In the real testbed deployed with Xen, we send 

XML-RPC requests to collect load information from any host 

in the same server farm through a control domain. Xen 

implements multiple control domains in charge of sending and 

receiving end hosts’ control messages. To construct a 

weighted bipartite graph (WBG), NABM leverages three 

decision policies: participation, candidate selection, and 

location, as defined in [17]. The participation policy decides 

which hosts are involved in the load balancing process. In this 

paper, we specify two node sets for over- and under-loaded 

hosts. They can be defined as a triggered set: 

  , 1( ,2 ,) ,,i

a a a iTR h h i u t iH n    ∣ and a non-

triggered set:  ,a a aNTR h h H h TR  ∣ , respectively. The 

triggered set is a set of hosts which resource utilization 

exceeds the system threshold in any dimension of resources.  

The hosts that are not marked as the triggered nodes belong to 

the non-triggered set. These two sets together form two vertex 

sets for the weighted bipartite graph used in NABM. 

Both the candidate selection policy and the location policy 

play the intermediate roles of generating edges and edges’ 

weight for the WBG. The candidate selection policy chooses 

the VMs to transfer to alleviate an overloaded hot spot. A VM 

is a candidate if the removal of this VM turns a triggered host 

into a non-triggered host. However, if the removal of any VM 

in a trigger node couldn’t turn the trigger host into a non-

trigger host, then all tenant VMs in this triggered host are 

chosen for the candidate set. For a triggered host ha, we 

identify the candidate set as (3). 
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The location policy selects the destination host to which the 

candidate VM previously selected is migrated. A Host ha in 

NTR is said to be feasible if after migration its capacity 

constraint Ca is not violated. For any avm CE   the location 

policy determines the set of potential destination hosts from 

the feasible hosts in NTR set. Since we attempt not to increase 

the number of triggered nodes after the migration of VMs, a 

feasible node can be a potential destination node only if the 

VM migration wouldn’t turn it into a triggered node. The set 

of potential destination hosts for any candidate VM 

avm CE    is shown in (4). 
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This policy then associates a cost with each (vmβ, ha). The 

cost is denoted as the sum of the resource requirements of vmβ 

divided by the residual capacity on n dimensions of the 

potential destination host ha. It indicates that a host with scarce 

remaining resources exhibits a higher cost. The formal load 

balancing cost function for a pair of migration (hsrc, hdst, vmβ) 

can be defined in equation (5).  

1

( , , )
n

LB src dst

i

i

i

dst

s
h vCost h m

f






 

where vmβ resides on hsrc which belongs to TR, hdst belongs to 

NTR, s
i
β denotes resource demands of  vmβ over each resource 

dimension i, f 
i
dst denotes the available resource of hsrc, and n 

denotes the total number of machine resources. For the 

candidate VM avm CE  , the location policy selects a 

destination host out of the potential destination host set 

according to cost.  We can apply one of the strategies in the 

best-fit, first-fit, worst-fit and the relaxed-best-fit [4] to 

determine the destination host. With the best-fit, we select a 

destination host with the smallest cost. Thus, the potential 

destination host with higher cost is less likely to be selected as 

a destination for the candidate VM.  However, it requires a 

linear search from a set of potential destination hosts. Thus, 

the relax-best-fit exhibits a better search time by investigating 

the smallest cost from a much small set of the potential 

destination hosts which are randomly chosen from the original 

potential destination hosts. With the relaxed-best-fit, it also 

reduces the chance of picking the same best potential hosts 

among different VMs and thereby increases the number of 

valid edges in weighted bipartite graph. NABM applies only 

relaxed-best-fit (RBF) as in [4].  

 
Fig. 4. An illustration of our WBG 

 

For a candidate VM in CEa, relax-best-fit select a 

destination host to form an edge in EPa. Since multiple 

candidate VMs residing at the same host could select the same 

destination host, it causes multiple edges between triggered 

and non-triggered nodes. We discard all such edges except for 

the edge with the smallest weight. Fig. 4 shows an illustration 

of WBG with two triggered nodes and three non-triggered 



nodes. Since candidate VM 1 and VM 2 in the Trigger node 1 

select the Non-Trigger node 1 as their potential destination 

host, two potential edges associated with the weights are 

formed between the Trigger node 1 and Non-Trigger node 1. 

However, the solid edge with the less weight than the dotted 

edge, the dotted edge is discarded from our final weighted 

bipartite graph. For any node pair, the edge set is computed as 

(6). 
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Finally, we construct a weighted bipartite graph: 

G=(V,E,W) where V TTR N R   and E is the edge set 

obtained from (6), W is the cost function  defined in (5). 

After constructing the WBG, NABM applies the Hungarian 

algorithm [12] to solve the minimum weighted matching 

problem. Since the Hungarian algorithm solves the instance of 

WBG with perfect matching, NABM must ensure that the WBG 

created above has an equal number of nodes for TR and NTR. 

Thus NABM algorithm adds pseudo nodes to either TR or NTR, 

whichever one has the smaller number of nodes, until they 

have the same number of nodes. Pseudo edges associated with 

a significantly large value also are added from a pseudo node 

to all nodes in the other set. Based on the outcome of each 

match from the Hungarian algorithm except for the pairs 

connected with pseudo edges, NABM migrate VMs from 

triggered nodes to their corresponding non-triggered nodes in 

parallel for balancing load. Compared with sequential 

migrations described earlier, NABM not only migrates VMs 

concurrently but also prevents from exhibiting the migration 

overhead due to contention at the end hosts’ NIC. 

NABM iterates the steps of constructing a weighted bipartite 

graph, finding its minimum weighted bipartite match, and 

parallel migrating the corresponding VMs until either there’s 

no triggered node left or the match consists of nothing but the 

pseudo edges. We omit the pseudo-code of NABM due to 

space limit. 

C. Network-aware Extension 

In addition to the weighted bipartite match that increases 
the total number of VM migration pairs in each round, the 
length of the duration between each parallel migration round 
also plays an important role in reducing total time till balance 
load. The time between each round depends on the longest 
migration time among all migrations.  Since the network hop 
distance between two hosts will affect the migration time [7], 
we further consider network hop distance in the location policy. 
Like [6], we assume that the traffic patterns rarely change in 
the production data center. Even though the traffic distribution 
could be highly uneven, a balanced traffic distribution could 
still be obtained in the data center network. For example, the 
cloud operators could reassign traffic flows among 
communicating VMs via equal-cost-multiple-path (ECMP) [18]  
or a centralized network controller such as NOX [19].   

Under even traffic distribution assumption, VM migration 
between end hosts with long network path exhibits a higher 
probability of long network delay. According to (7), it indicates 
that the migration time is proportional to the size of VM 
transfer memory and the communication distance while being 
disproportional to the bottleneck of end hosts’ NIC bandwidth. 
NABM extends the previous cost function in (5) to account for 
migration cost which is related to the network hop distance and 
the size of VM transfer memory as defined in (7).  
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where vmβ resides on hsrc which belongs to TR, hdst belongs to 
NTR, s

mem
β is memory volume of  vmβ, f

bw
src and f

bw
dst denote the 

available bandwidth for VM migration in source and 
destination NIC, respectively, and D(i, j) is network hop 
distance between Host i and j. An example of D(i, j) is to 
account for the hop count between end hosts in some data 
center network architectures such as fat-tree [20] and VL2 [18]. 
This paper implements fat-tree and VL2 as the underlying 
network architectures. The extension of NABM takes a 
normalized cost of (5) and (7) as in (8). 
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where   is an adjustable parameter for normalizing the 

migration cost with load balancing cost; and the α is the 
parameter for adjusting the relative importance between the 
two costs. For example, it considers no network cost if α is zero. 
During constructing the WBG, the edge weight is substituted 

with ( , , )src dstCost h h vm
 
in (8) in the location policy. This 

paper conducts a number of event-driven simulation analyses 
to study how parameter α affects the time till system is 
balanced, the mean VM migration time between each round, 
and the application performances in section VI. 

V. ENERGY-AWARE BIPARTITE MATCHING LOAD-BALANCING 

Power consumption constitutes one of the major costs for 
the data center. Thus it is imperative to save energy by turning 
off some unnecessary machines. To turn off those machines, all 
tenant VMs need to migrate to other active machines. In order 
to achieve energy saving while maintaining performances of 
running jobs, one has to carefully deal with both the impact of 
migration time and uneven workload distribution which will 
degrade application performance. This section first defines 
energy saving as a machine consolidation problem. Then we 
extend the previous NABM load balancing algorithm to turn off 
machines. 

The problem of machine consolidation is defined as follows. 
Given the sets of physical hosts H, VMs V, host capacity C, 
available capacity F, and the average target system utilization 

 1 2, , , nTU tu tu tu , where n is the number of dimensions of 

resources, this paper wants to estimate the minimum number of 
hosts to provision for the total resource requirement of VMs 
such that the average system utilization is closer to TU. Aside 



from aiming to turn off as many machines as possible like first-
fit-decreasing (FFD) bin-packing algorithm in [21], we further 
focus on maintaining the load-balanced state. We extend the 
NABM algorithm by adding an energy aware policy and name 
it as Network- and Energy-aware Bipartite Matching (NEABM) 
method.  

NEABM first searches for potential hosts to turn off. Then 
NEABM applies parallel migration to empty VMs out of those 
hosts simultaneously. Specifically, like NABM, NEABM 
transforms the machine consolidation problem to a minimum 
weight matching problem over a WBG. In addition to choosing 
the hosts whose resource utilization exceeds the system 
threshold of any dimension of the resources as triggered nodes, 
NEABM would force some target machines to remain as 
triggered nodes until they empty out all resident VMs in order 
to turn off them.  

According to the target system utilization set by the 
operators, NEABM approaches this target utilization by finding 
as many hosts as possible to turn off. Similar to other multi-
capacity bin-packing algorithms which sort the bins in either 
increasing or decreasing order according to the squared sum, 
maximum load or product of load [21], NEABM searches hosts 
to turn off in either increasing or decreasing order of resource 
utilization of hosts. For our multi-resource case, the sorting 
order will be determined by one resource at a time. If the first 
resource utilizations of two hosts are the same, second resource 
utilizations are compared and so on. The increasing order of 
utilization for multi-resource can be defined as in (9):  
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where the notation 
 
denotes the turning off priority order for 

any two hosts.   

Given target utilization constraint TU, let PM
i
 denote the 

total available capacity for all VMs in each dimension of 
resources i as in (10). 
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Let VM
i 
denote the system requirements of resources i as 

the sum over ith resource requirement of all VMs as in (11). 
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Let SL denote a set of candidate hosts to turn off, if they can be 
removed without violating the total available capacity under 
target utilization constraint. Let PM

i
tmp denote a variable. 

Initially the set SL is empty and PM
i
tmp is set to PM

i
. 

Depending on either the increasing or decreasing order of 

host’s utilization to turn off the hosts, a Host 
ah H  which is 

either least utilized or greatly utilized will be tested to see if 

turning off ha would satisfy i i i

tmp aPM c VM   for each 

dimension of resource i. If it’s true, the Host ha will be added to 

SL and update the vector as i i i

tmp tmp aPM PM c  . This iteration 

stops when removing a host will violate the total available 

capacity under target utilization constraint for any dimension of 
resources.  

Although NEABM could meet the target utilization by 
finding a number of potential hosts to turn off, the number of 
actual hosts being turned off could decrease as the target 
utilization gets larger. When the target utilization gets larger, 
the number of potential hosts to turn off also gets larger.  It 
results in a much smaller room to accommodate the variance of 
multiple resources. Thus, it becomes difficult for the VMs that 
are resident on the triggered nodes to select a destination host 
without violating the system threshold if the system threshold 
equal to target utilization. Therefore, we take the system 

threshold ti as tui + , where  is a small number to give more 
room for NEABM to accommodate multi-resource variance.  

The value of  is determined by the standard derivation of 
resource usage under NABM. 

Given a SL, NEABM defines a new trigger node set TR as 

  ( )' )a a aSTR h h hL TR   ∣(




Hosts not appearing in the TR set are in the NTR set. 
Throughout the load balancing process, NEABM ensures that 
those triggered nodes from the SL remain triggered nodes 
unless all resident VMs are removed. NEABM iteratively runs 
the parallel VM migration. It shuts down a machine only if 
there are no resident VMs. This process continues until it finds 
no valid migration edges from the match. 

VI. EXPERIMENTAL EVALUATION 

This section studies the effectiveness and scalability of the 
NABM and NEABM algorithms by comparing them with the 
VectorDot (VD) [4] using the NetworkCloudSim [22] 
simulation platform. 

A. Experimental Settings 

To vary the system scale we simulate with 50~1050 hosts 
and 157~3244 VMs. The baseline host is equipped with a 
2.8GHz (approximately 12,000 MIPS) quad-core CPU, 4 GB 
memory, and 1024 Mbps NIC. The multi-resource and 
heterogeneous capacity of each host is generated as baseline 
capacity*(1±heterogeneous degree.) The heterogeneous degree 
is 0.2. Each VM consumes 12%~25% multi-resource demands 
of the baseline host capacity. Each VM runs a large-scale Bag-
of-Task (BoT) application which is independent without need 
to communicate with other VMs. The workload consists of 
287,712,000 million instructions which take approximately 9 
hours to finish for a VM with 8880 MIPS CPU. Typical 
examples of such workload are biological computation, data 
mining, and scientific engineering applications. The 37% of 
hosts are over provisioned, which are considered as overloaded 
hosts. The average system utilization along each resource 
dimension is approximately 57%. In order to accommodate the 
variance of multi-resource load balancing, the triggered node 
threshold is set to 75% along each dimension of resources. 

For the case of energy saving, the average target utilization 
for power saving is from 60% to 80%. In order to study the 
impact of the tolerance ratio on power saving, the tolerance  



 

ratio  for power saving is set to 0.15 and 0.2 where  is a small 
number to give more room for NEABM to accommodate multi-

resource variance. While  = 0.15 and 0.2, the triggered node 
threshold will be set from 75% to 95% and from 80% to 100% 
for power saving, respectively. In order to study the effect of 
power saving, we take power equation in (1) to measure the 
power consumption of the host, where k is set to 0.7 and 
thecurrent CPU utilization l is obtained at runtime. Pmax is set to 
250 W. The power consumption of the system is obtained by 
the sum of power consumption of those hosts not being turned 
off over a fixed number of hours (kwh). 

For the network parameters, we assume that the workload 
in VM consumes on average 57% of host NIC bandwidth. This 
bandwidth is reserved and not used by VM migrations. The 
network topologies fat-tree and VL2 used in our simulation are 
built according to [6]. The network parameter α is set from 0 to 

1 with 0.2 increment. While  = 0, NABM would not consider 
any impact of the network topology. We take a modest value of 

network weight  equal to 0.6 for the simulation results in Fig. 
5, 6, and 7. The available bandwidth of core and aggregate 
switch reserved for VM migration is set to 1184 Mbps in the 
following experiments. The parameter   is determined as 

follows. We observe that load balancing cost CostLB in general 
is in the range (0, 1.8]. In order to combine the costs of load 
balancing and migration, we normalize the migration cost to be 
in the range (0, 1.8]. Thus we take   as 1.8 divided by the 

maximum value of migration cost which is in the range [1000, 
2800] in our experiments. For the rest of simulation, we fix   

= 1.8/1500. 

All the performance results are an average of 10 repeated 
runs and obtained at the moment of system convergence. We 
use the following metrics to evaluate NABM, NEABM, and VD: 

the system utilization and standard deviation of multi-resources 
of the hosts, the time it takes for the load balancing process to 
reach a balanced state, the number of VM migrations taken 
during the load balancing process, the total application 
completion time, the number of hosts being turned off, and the 
power consumption of the system. 

B. Experimental Results 

Fig. 5(a), (b), and (c) and Fig. 6(a), (b), and (c) show the 
average standard deviation of resource usage of CPU, memory, 
network bandwidth, and their average resource utilization, 
respectively, for different numbers of hosts. All of NABM, 
NEABM, and VD exhibit a lower resource standard deviation  

than NOLB, which does not do any load balancing. For the case 
of energy saving, the average target utilization for power 
saving is 75%. Therefore, NEABM can turn some machines off 
to reduce power consumption of the system. As a result, 
NEABM has a higher utilization along each dimension of 
resources than NABM and VD. NEABM achieves a moderately 
higher resource standard deviation than NABM and VD 
whilefew numbers of hosts are operating. The differences of 
average standard deviation between NABM and VD are less 
than 5% which means that NABM still maintains a good degree 
of imbalance at balanced states compared with VD. 

Fig. 7 (a) shows that the time for NABM and NEABM to get 
the system to a balanced state is much less than the time for VD 
especially in a data center with a large number of hosts. For VD, 
the balance time increases along with increases of the number 
of VM migrations. This is because VD sequentially migrates 
one VM at a time. In contrast, NABM and NEABM 
concurrently migrate VMs according to the number of 
independent matching pairs. NEABM takes more time than 
NABM to reach system balance. Fig. 7(b) shows that NEABM 
takes more migrations until all resident VMs of the selected 
hosts are emptied. While the average number of VM 
migrations per round for VD is constant (equal to 1), the 
average number of VM migrations per round for NABM and 
NEABM increases as the number of hosts increases  as shown 
in Fig. 7(c). This is because as the number of hosts increases, 
the matching pairs in the minimum weighted matching also 
increases. Fig. 7(d) shows that the total application completion 
time of the NABM algorithm is better than VD by 1%, 3%, 
5%,7%, 9%, and 10%, respectively, under different numbers of 
hosts. This is because NABM handles multiple overloaded hosts 
at a time, decreasing the load on those hosts and thus 
decreasing the degree of resource contention amongst the 
applications running on the VMs. In contrast, VD handles only 
one trigger node at a time and the algorithm needs to spend a 
longer times to decrease the amount of trigger nodes. When the 
number of hosts is increased, there are more VMs in the 
hotspot competing for the resources. For VD, it will take more 
rounds (i.e. time) to alleviate the hot spot. Besides, NABM 
achieves a slightly better throughput than NEABM because 
NABM takes less time to reach a balanced state.  

Fig. 8 shows the VM migration time and the time it takes to 
reach a load balancing state under different weight of network 

parameter . As the weight of the network parameter   

  
Fig. 5(a).  STD of CPU utilization Fig. 5(b).  STD of memory utilization 

  
Fig. 5(c).  STD of network utilization Fig. 6(a).  Average CPU utilization 

  

Fig. 6(b) Average memory utilization Fig. 6(c).  Average network 
utilization 



increases, NABM can select more hosts with shorter paths to 
migrate VMs for both fat-tree and VL2 as shown in Fig. 8(a) 
and 8(b). Fig. 8(c) shows that the time till the system reaches 

the balanced state is reduced as the network parameter  
increases. It’s because migrating VMs along a shorter path 
could improve the mean migration time. Especially, compared 
with no network cost or very small network cost cases, 

considering the network hop distance ( > 0.2) saves us more 
than half of the time to they take to reach a balancing state. 
With the decline of migration time, network-aware further 
improves application performances as shown in Fig. 8(d). 
However, large network parameter value could still hurt the 
time till the system reach balance and application performance. 

This is why we pick network weight  equal to 0.6 in our 
previous experiment setting. Fig. 8(e) shows the standard 
deviation of CPU utilization verse network weight while 
NABM and NEABM reach a balance state. When network 

weight  increases, the standard deviation of CPU utilization 
increases. It indicates the tradeoff between VM migration time 
and load balancing degree. 

To compare the effect of power saving under a different 
system scale, we fix the power measurement interval to be 100 
hours in all cases. During the measurement interval, we ensure 
that the batch running at each VM still consumes machine 
resources. Thus the dynamic power of power equation (1) will 
not become zero. Fig. 9 shows that the power consumption for 

NEABM. NEABM saves, especially when the system scale gets 
large. This is because NEABM consumes the fewest static 
power as it turns off a large number of hosts.  

Next, we study how average target utilization and the 

tolerance ratio  of NEABM would affect the number of 
machines being turned off. In addition, since NEABM 
approaches the target utilization by first searching for potential 
hosts to turn off followed by applying parallel migration to 
empty VMs out of those hosts, we would like to know the ratio 
of selected potential machines to turn off over the exact number 
of turned off machines. In all the following experiments, the 
initial number of hosts is 450 hosts. In Fig. 10, we refer to the 
number of selected potential machines to turn off and the exact 
number of machines to turn off as Theoretical and Real, 
respectively. Fig. 10(a) and 10(b) show the number of 

machines to turn off with different tolerance ratio. The gap 
between Theoretical and Real number of turned off machines 

becomes closer as the tolerance ratio  increases from 0.15 to 
0.2. This is because increasing the room for accommodating 
the multi-resource variance also increases the chances for the 
VMs in potential turn off hosts (trigger hosts) to be migrated to 
non-trigger hosts without violating the system threshold. The 
selecting order from the least loaded machines first to turn off 
could actually turn off more machines than selecting from the 
most loaded machines first while the average target utilization 
is below 75% as shown in Fig. 10(a). This is because when the  
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Fig. 8(a) Fat-tree: the number of VM 
migrations with different hop count   

Fig. 8(b) VL2: the number of VM 
migrations with different hop count  

Fig. 8(c) Total time taken to reach a 
balanced state in fat-tree and VL2 

Fig. 8(d) Total  batch completion time 
in fat-tree topology 
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Fig. 10(a). Number of machines being 
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Fig. 10(b) Number of machines being 

turned off when   is 0.2 



average target utilization is below 75%, the number of 
Theoretical machines to turn off is also small. Since there are 
fewer VMs to empty out from lightly utilized machines than 
from overloaded machines, the least load first doesn’t take a 
large number of migrations to empty out machines compared to 
selecting order from the most load first. However, when the 
average target utilization is greater than or equal to 75%, the 
least load first perform worse than the most load first in term of 
number of machines to turn off. Although the least load first 
still takes few migrations to empty out each selected potential 
host, it also selects a large number of non-trigger nodes to be 
trigger nodes. Thus it could lead to a few number of trigger 
nodes not being turned off. Fig. 10(b) shows that with a higher 

tolerance ratio , the real number of turned off machines is 
close for both cases as the average target utilization is below or 
equal to 70%. As the average target utilization is greater than 
70%, the exact number of turned off machines for selecting 
from the most load first is greater than selecting from the least 
load first. The reason is similar to the trend with Fig. 9(a) 
described earlier. 

    Fig. 11(a) and 11(b) show the respective power consumption 
for 10(a) and 10(b), respectively. The power consumption is 
measured over a power measurement interval of 9 hours. As 
the target utilization increases, each host in the system could 
afford more workloads and thus NEABM could turn off more 
machines, thereby the power consumption also decreases. As it 
was shown, deciding which sorting order to turn off machines 
also allows NEABM to achieve better power efficiency. 

VII. CONCLUSION & FUTURE WORKS 

We propose a network-aware multi-resource load-balancing 
scheme using a parallel VM migration. We transform the 
parallel VM migration to a minimum weighted matching 
problem of a weighted bipartite graph in a cloud system. Our 
algorithm migrates VMs parallel with each other to minimize 
the time to get the system to a balanced state and thus increases 
the throughput of overloaded hosts. Since the network hop 
distance between two hosts will affect the migration time, we 
further consider network hop distance into our cost function. In 
addition, since power wastes in the cloud data center are 
mainly due to the idle power at low utilized hosts, in order to 
save energy while preserving multi-resource load balancing, 
we extend our load balancing algorithm to turn off as many 
machines as possible. Simulation results show that our NABM 
algorithm improves the throughput on overloaded machines up 
to 10% compared with VD. Our energy-aware method saves up 
to 38% power consumption without degrading the application’s 
completion time. In the future, we will take network bandwidth 
into consideration. In order to avoid multiple migrations 

sharing a same network link, a greedy algorithm will be applied 
to select one VM migration pair at a time until no more 
migration pair. However, the VM migrations still can be 
performed in parallel.  
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