
Network and Energy Aware Load-Balancing via

Parallel VM Migration for Data Centers

Kun-Ting Chen, Chien Chen, Po-Hsiang Wang
Department of Computer Science

National Chiao Tung University, Hsin-Chu, Taiwan

quentin2007.cs96g@g2.nctu.edu.tw, chienchen@cs.nctu.edu.tw, btc889874.cs98g@g2.nctu.edu.tw

Abstract—It becomes a challenge to design an efficient load

balancing method via live virtual machine (VM) migration

without degrading application performance. Two major

performance impacts on hosted applications that run on a VM

are the system load balancing degree and the total time till a

balanced state is reached. Existing load balancing methods

usually ignore the VM migration time overhead. In contrast to

sequential migration-based load balancing, this paper proposes

using a network-topology aware parallel migration to speed up

the load balancing process in a data center. We transform the

VM migration-based multi-resource load-balancing problem into

a minimum weighted matching problem over a weighted

bipartite graph. By obtaining the minimum weighted matching

pairs from the Hungarian method, we parallel migrate multiple

VMs from overloaded hosts to underutilized hosts to reduce the

time reaching a load balanced state. In addition, since a major

cause of energy inefficiency in a cloud data center is the idle

power wasted when servers run at low utilization, cloud

operators can turn off those low utilized servers after using VM

migration to empty out their workloads. Therefore, we can

extend our load balancing algorithm to force low utilized servers

to empty out their VMs simultaneously. The experimental results

show that our algorithm not only obtains a compatible multi-

resource load balancing performance but also improves the

balanced time which results in at most a 10% throughput gain by

assuming a large batch application running on all VMs. With

energy aware load balancing, the power saving is up to 38%

without degrading the applications' completion time.

I. INTRODUCTION

Cloud data centers employ virtualization-based technology
to consolidate hardware resource usage to provide application
hosting for multiple service providers. In a cloud data center,
thousands of commodity computers work in parallel to host
virtual machines (VMs) that support different applications. The
CPU speed, memory size, and network bandwidth of different
commodity computers are widely heterogeneous. Besides, a
physical host may run multiple services with different types of
resource demands. Without proper allocation, the loads of
different resources may become unbalanced among different
physical hosts. Even with careful resource provisioning at the
beginning, due to dynamic arriving and leaving of running
workload, the cloud system could still become a load
unbalanced state later. Thus, a cloud system may have quite a
few overloaded hosts while lots of underutilized hosts are still
available.

Load-balancing mechanisms improve system performance
by reducing resource contention (e.g., CPU, network

bandwidth, and memory) on overloaded hosts. More
importantly, it can prevent higher hardware failure rate in
overloaded hosts.

Load-balancing mechanisms are effectively studied in
many research areas, including distributed systems, web
servers, and cloud systems, to maximize resource utilization
and minimize the variance of the load of multiple servers [1] [2]
[3] [4] [5] [6] [7] [8] [9] [10] [11]. While most recent research
focuses on the VM migration as a mean to achieve load
balancing in cloud systems [4] [5] [6] [7] [8] [9] [10] [11] , few
of them focus on the impact of the total time required to reach
system balance. Normally, the existing load balancing
algorithms search for a VM to instantiate a VM migration from
overloaded hosts to under-loaded hosts. They usually select and
start the next VM migration when the previous migration
completely terminates. These schemes aim at achieving an
egalitarian state without considering the waiting time for other
hosts to offload their workload. This paper calls such schemes
“sequential migration-based load balancing methods.” These
methods could lead to all overloaded hosts taking a long time
to offload their workload. Consequently, the applications
running on those overload hosts will contend for the resources
for a longer time. Therefore, users could experience application
performance degradation.

In this work, we study the multi-resource load balancing
problem for a cloud data center with heterogeneous hardware
capacity. Compared with sequential migration-based load
balancing methods, this paper proposes a parallel VM
migration approach that focuses on minimizing the joint multi-
resource imbalance and the time it takes to reach a balanced
state. In addition, the migration delay due to the data center
networks’ architecture is considered, especially if the migration
pairs are between machines with a large hop distance. In order
to improve the application performances, this paper minimizes
the time till a balanced state is reached by migrating VMs
between independent pairs of hosts while considering the
underlying network topology. To be specific, this paper models
the load balancing problem with a weighted bipartite graph
(WBG). The over- and underutilized hosts in a data center are
selected as two disjoint sets of vertices: Trigger (TR) node and
Non-Trigger (NTR) node sets. A physical host is said to be a
trigger node if its resource utilization exceeds a system
threshold on any dimensions of resources; otherwise, it is a
non-trigger node. Each edge between the two sets is designated
with a weight according to the multi-resource requirements of
VMs, the various resource capacities of the hosts, and the
network cost between two hosts. By solving the minimum

weighted matching problem using the Hungarian method [12],
this paper could migrate a set of VMs between over- and
underutilized hosts in parallel.

In addition, to maintain a large-scale computational
environment, a cloud data center needs a lot of hosts running
persistently and a cooling system to maintain a working
temperature. In general, the increased number of running hosts
and the cooling system consume large amounts of power.
However, a major cause of energy inefficiency in a cloud data
center is the idle power wasted when some servers run at low
utilization. Recent researches such as [13] [14] are dedicated to
saving energy by moving VMs from underutilized hosts to
other hosts and turning off those hosts without any workloads.
These researches usually transform the energy saving issue to a
classical bin-packing problem. Physical hosts are viewed as
individual bins and the workload as an item. The energy saving
problem is then modeled as the problem of filling all items into
bins while the goal is to minimize the number of bins.

In such a straightforward modeling, the load balancing
problem still exists. First, due to heterogeneous machine
capacity and various VM workloads, the bin-packing could still
involve migrating VMs out of overloaded hosts. Since item
size (i.e. size of VM resource requirement) is varied, it may
still involve selecting an appropriate host to receive a migrating
item (i.e. VM) instead of simply migrating any VM into any
host to yield a better packing result. Therefore, as mentioned
earlier, migrating many VMs out of hosts could exhibit a
sequential migration. As a result, it may take a long time for
selected hosts to empty out their workload before they can be
turned off. This paper augments our parallel migration-based
load balancing algorithm to migrate VMs simultaneously to
quickly turn as many hosts off as possible while preserving the
system load balancing state. In order to turn off selected hosts,
our algorithm marks these hosts as triggered nodes and they
remain triggered nodes until all tenant VMs have been
migrated.

The experimental results show that our algorithm achieves
a compatible multi-resource load balancing while improving
the balancing time, which results in at most a 10% running
application’s throughput gain compared to conventional
algorithms which perform load balancing in a sequential
manner. With energy aware load balancing, the amount of
power saved is up to 38% without degrading the applications'
completion time.

The rest of this paper is organized as follows. Section II
describes related works. Section III elaborates the motivation
behind this work. Section IV describes the network-aware
bipartite matching load balancing algorithm in detail. Section V
describes the network-and-energy-aware load-balancing
algorithm. Experimental results of the simulation and an
evaluation will be presented in section VI. Finally this paper
concludes with some remarks in section VII.

II. RELATED WORKS

A. Load Balancing Methods

A number of researches have proposed load balancing
methods [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] for cloud
data center. Most of these works focus on balancing the
resource requirement of VMs on physical machines. Based on

their algorithms, they migrate either single or multiple VMs in
each round of the load balancing procedure. These load-
balancing schemes for cloud computing measure the load on
physical hosts in different ways. However, none of their efforts
address the multi-resource load balancing issue [1] [2] [3].
Zhao and Huang [2] use the number of VMs of a host as their
load measurement. Recent study [3] mimics the animal
behavior of honeybees foraging and scouting to harvest foods
for load-balancing. Though the scheme works for a dynamic
workload, they assume each host is homogeneous and deal
with single resource only. And yet [4] considers the multi-
resource demands of VMs and heterogeneous capacity in each
host. They propose a load balancing method called VectorDot
(VD). Their goal is to bring overloaded hosts below their
threshold by migrating one or more VMs sequentially. They
extend Toyoda heuristic for a single knapsack problem to solve
a multidimensional knapsack problem. VD treats a VM in an
overloaded host as an item to be placed into an appropriate
node. Then, this VM is migrated to the selected destination
node. This procedure is repeated until no more overloaded
hosts. From a practical perspective VM migration takes a while
to finish. Thus migrating VMs in a one-by-one manner could
take a long time till system balancing, and thereby exacerbating
the running applications that are hosted on overloaded
machines.

Recent works that consider VM migration overhead for
load balancing can be found in [7] [8] [9] [10] [11]. Since a
cloud system involves cloud operators and network operators
with different goals in mind, [7] studies the problem of making
both objects meet. At one hand, the cloud operators wish to
assign a number of VMs to some selected hosts for the purpose
of meeting the VM scheduling deadline. Thus, the cloud
operators wish to pair for each VM with a destination host that
minimizes the migration time. On the other hand, the network
operators wish to minimize the network bandwidth. To make
both ends meet, [7] models a balanced stable matching problem
for both requirements of cloud operators and network operators.
VM migration overhead is derived from the network topology
and the transfer memory volume. However, their matching
does not consider the bandwidth of NIC sharing at the
destination host. Thus they could migrate several VMs from
multiple distinct hosts to an identical host which could degrade
into the sequential migration. In contrast, we consider finding
independent pairs between the end hosts for load balancing via
parallel migration.

Recent works [8] [9] conduct a number of experiments on
the cloud testbed to study the factors that influence VM
migration time and impact of live migration on application
performances. In [8], they show that VM migration could
contend resource with the running workload on the source and
destination host, especially as the number of concurrently
migrating VMs between one source and one destination host
increases. Hence they study the problem of selecting a number
of VMs to migrate that minimize the resource contention
overhead. [8] models a VM migration as processes that run at
source and destination hosts. They show that by carefully
assigning VM they could reduce VM migration overhead.
Though, it is difficult to formulate the impact of migration time
given different combination of jobs and VM migrations
running on machines with various resource configurations. As

the cloud system gets larger, the resource contention model
would become more difficult to build. [9] shows that the
destination host CPU reserved for the migration process has
little to do with migration time. The source host CPU impacts
the migration time when the host is overloaded, especially
when its memory dirty rate is high. However, they only suggest
a direction to balance multi-resource load without relating it to
the performance overhead incurred by concurrent VM
migrations. In contrast to [8] [9], this paper performs an
experimental study of live migrations and application
throughputs with multiple, concurrent VM migrations (in next
section). These experiment results provide a motivation to a
new parallel migration-based load balancing algorithm.

Recent studies [10] [11] formulate the load balancing
problem with migration overhead being the distance measured
by the number of hops in the Internet. Nevertheless these
schemes often do not consider the heterogeneous capacity of
multi-resource in each host. In addition, the concurrent
migration approach they adopt still has a chance to migrate
multiple VMs to an identical destination host or from a single
source to multiple distinct destinations.

B. Energy Issues

Considering the fact that a large percentage of power
consumption comes from the static power from those
underutilized machines, this paper considers migrating all VMs
out from those hosts. Thus those hosts can be switched off to
reduce total power consumption in a cloud system. The power
consumption of a running host consists of two parts: static
power and dynamic power. Studies show that on average an
idle server consumes approximately 70% of the total power
consumption. To deal with energy issues, this paper adopts the
power model described in [14] in equation (1) .

max max() (1)P l k P k P l

Pmax denotes the maximum power consumed in a host when its
CPU utilization is 100%; k is the fraction of static power and is
approximately 0.7; and l is the current CPU utilization which
determine the dynamic power consumption.

In [13], the energy issue is transformed to a traditional bin-
packing problem. Physical hosts are viewed as individual bins
and the workload as an item. The energy saving problem then
is modeled as the problem of filling all items into bins while
minimizing the number of bins. Although this paper takes a
similar approach to reducing the number of running hosts, it
further focuses on preserving the system load balanced state.

III. MOTIVATION

Even through the modern cloud administrators migrate
multiple VMs concurrently, if the hosts of migration pairs do
not choose carefully, concurrent migration still has a chance to
degrade into sequential migration. The worst case circumstance
in load balancing is to migrate many VMs from different hosts
to one under-utilized host (many-to-1) concurrently. In order to
turn off a host in energy saving, one common example occurs
when we migrate all VMs from one host to many hosts (1-to-
many) concurrently. In this section, we measure the real
application performance and compare parallel migration with a
range of many-to-1 and 1-to-many concurrent migration. The
experiment is conducted on a real testbed based on Xen [16]. In
this system, we reserve the network bandwidth as 100 Mbps at
each host NIC for VM migration. Each VM runs crypto.rsa
application in the SPECjvm [17]. VMs serving the same
application type are allocated with identical resources. During
live migrations, applications running on VMs persist in
execution with small interruption time compared with non-live
migration [16]. We first measure the time taken for each
individual VM during concurrent migration by observing
different combinations of VM pairs. Then we observe the
application performance for an increasing number of
concurrently migrating VMs. A conclusion that leads to the
work in this paper follows thereafter. Each evaluation is an
averaged result for 10 times.

Fig. 1 shows the individual VM migration time for
migrating two VMs with increasing total migrating memory
volume. Consistently with [8], as each VM memory size
increases from 256 to 1280 MB (where the total migrated size
increases from 512MB to 2048MB, respectively,) VM
migration time takes a linearly increasing proportional to
transfer memory volume. As two distinct hosts migrate to a
single host (i.e., 2-to-1), it suffers from a linearly increasing
time for both VM migrations since the network capacity at the
destination host’s NIC is shared by the two migrations. When
migrating from a single host to two distinct hosts (i.e., 1-to-2),
one VM does not start migrating until another finishes
migrating. This is the mechanism implemented by the Xen
platform

1
 which would start VM migration after the previous

one finishes, that behaves the same as sequential migration in

1
Xen provides migrating modules for synchronous and asynchronous

modes. The only difference is whether the migrating thread immediately returns
to user thread or returns until migration completes. Both implementations
migrate VMs in sequential manner even they are issued concurrently.

Fig. 1. Migration time vs. VM memory size Fig. 2. Total elapsed migration time vs. number of

VMs
Fig. 3. Number of completed operations vs. number of

VMs

the case of migrating two VMs from one host to the other host.
As opposed to the above cases, the parallel VM migration
scheme (i.e., 2-to-2) achieves the smallest migration time
without suffering from additional network delays.

Given that migrating two VMs could degrade into
sequential migration in the 2-to-1 and 1-to-2 cases, we would
like to know the performance impact of migrating multiple
VMs concurrently in a larger scale, especially in an overloaded
system environment. We assume that an overloaded
environment consists of overloaded hosts and idle hosts. In the
following experiments we assume that all the VMs run on
those overloaded hosts. In such an overloaded environment, the
workload on one VM contends resources with all other VMs
resident on the same host. Thus the time until a VM is migrated
to an idle host could affect the application performance running
on that VM.

We study the impact of total migration time of different
number of migrating VMs on the performance of workload on
the migrating VMs, where the total migration time denotes the
longest completion time for migrating a number of VMs. In the
many-to-1 case, we concurrently migrate 2, 3 and 4 VMs each
from 2, 3 and 4 overloaded hosts to one idle host. On the
contrary, the 1-to-many case exhibits that 2, 3 and 4 VMs in
one overloaded host are migrated to 2, 3 and 4 idle hosts
respectively. The 1-to-1 case let 2, 3 and 4 VMs migrate from
an overloaded host to an idle host. Parallel migration
independently migrate 2, 3, and 4 VMs each from 2, 3 and 4
overloaded hosts to 2, 3 and 4 idle hosts. Each VM migration is
instantiated by our controller 1 minute after the workload starts
running. During VM migration, we measure the application
performance obtained on migrating VMs. In order to measure
the impact on the running application, the iteration duration
parameter of the crypto.rsa application is set to last after all
VMs finish migrating. This parameter ensures that the VM
continues to demand resources during the VM migration. The
baseline performance is approximately 108 operations under
baseline single core CPU at 2.67GHz.

Fig. 2 shows the total migration time under 2, 3 and 4VM
migrations. As the number of VM migrations increases, the
completion time of migration increases as in many-to-1, 1-to-
many and 1-to-1 cases. However, the total migration time of
parallel migration remains almost the same. It’s the smallest
among the other cases. Consistently with [8], as the total
transfer memory size of concurrent VM migrations increases,
the total migration time also increases. Given that the total
transfer volume of memory between two hosts is fixed, they
observe that the total migration time increases as the number of
concurrent VM migrations increases. This is due to the
resource contention between those migration processes and
running workload on the source and destination host. In order
to improve application performance, they study the VM
assignment problem by selecting different pairs of VM
migrations to lower the impact of resource contention.

Fig. 3 shows the total number of completed operations of
crypto.rsa observed on migrating VMs. The case of a single
host to multiple distinct hosts (1-to-many) completes 4%, 9%,
and 10% fewer operations than parallel migration, as the
number of concurrently migrating VMs increase from 2, 3 to 4.
Although the many-to-1 case experiences a smaller total
migration time than that of the 1-to-many as shown in Fig. 2,

the number of completed operations of many-to-1 decreases
more severely than that of 1-to-many with 15%, 34%, and 61%
fewer operations done than parallel migration. Further, the
many-to-1 case is also close to the worst case without
migration (i.e. no load balancing). The 1-to-many case
completes more operations than the case of many-to-1 where it
suffers from a longer migration delay for each individual VM
as shown in the 2-to-1 case in Fig. 1. Among them, parallel
migration shows the highest workload completion rate. These
observations suggest that maneuvering parallel VM migrations
is feasible to improve application performances.

IV. NETWORK-AWARE BIPARTITE MATCHING LOAD-

BALANCING ALGORITHM

Load balancing for multi-resource requirements while
considering heterogeneous resource capacity has been a
challenging problem, especially in a large scale cloud hosting
environment. In this paper, we study the load balancing
problem for a cloud data center. Especially, we try to reduce
the time taken for a cloud data center to reach its load balance
state. Since a live migration of VM takes some time to
accomplish, sequentially migrating VMs from trigger nodes to
non-trigger nodes may take a long time to offload workload for
overload hosts. Further, the migration delay between two hosts
varies according to the underlying network architecture and the
transfer volume of VM memory. Thus, we propose a Network-
Aware Bipartite matching (NABM) load balancing algorithm.
This paper first transforms the load-balancing problem into a
minimum weighted matching problem. According to the
minimum weighted matching obtained from the Hungarian
method, this paper migrates VMs from overloaded hosts to
underutilized hosts in parallel. Furthermore, this paper adds the
hop distance between source and destination hosts to reflect
impact of the network to the VM migration time. By reducing
the VM migration time, it can shorten the time for a cloud
system to reach its load balanced state.

A. Preliminary

The notations for use in NABN will be defined as follows.

Let 1 2, , , mhH h h and 1 2, ,, vV vm vm vm denote a set

of hosts and VMs in a cloud system, respectively, with an

existing allocation :A V H where ()iA vm denotes the host

where vmi resides. The resource consumption for a VM vmβ is

 1,2, ,i i nS s ∣ . The input to our load balancing

algorithm includes a capacity value, a current utilization value

and a suggested threshold fraction between 0 and 1.

Let | {1,2,..., }i

aaC c i n and 0,1 , 1,2, ,a

i i

a aU u u i n ∣

denote the vectors of capacity and resource utilization along n

dimensions of resources for a Host ha, respectively.

 | [0,1], {1,2,..., }i iT t t i n denotes the vector of system

threshold along each dimension of resources. Our load

balancer will maintain the usage of the resources below those

thresholds. Moreover, the available capacity for host ha in any

dimension of resources can be represented as in (2).

 1,2,1 , ,i i i i

a a a a aF f f u c i n ∣

B. Bipartite Matching Load-Balancing

Similar to [4] , NABM collects multi-dimensional resource

utilization information of hosts and resource requirements of

VMs as input. In the real testbed deployed with Xen, we send

XML-RPC requests to collect load information from any host

in the same server farm through a control domain. Xen

implements multiple control domains in charge of sending and

receiving end hosts’ control messages. To construct a

weighted bipartite graph (WBG), NABM leverages three

decision policies: participation, candidate selection, and

location, as defined in [17]. The participation policy decides

which hosts are involved in the load balancing process. In this

paper, we specify two node sets for over- and under-loaded

hosts. They can be defined as a triggered set:

 , 1(,2 ,) ,,i

a a a iTR h h i u t iH n ∣ and a non-

triggered set: ,a a aNTR h h H h TR ∣ , respectively. The

triggered set is a set of hosts which resource utilization

exceeds the system threshold in any dimension of resources.

The hosts that are not marked as the triggered nodes belong to

the non-triggered set. These two sets together form two vertex

sets for the weighted bipartite graph used in NABM.

Both the candidate selection policy and the location policy

play the intermediate roles of generating edges and edges’

weight for the WBG. The candidate selection policy chooses

the VMs to transfer to alleviate an overloaded hot spot. A VM

is a candidate if the removal of this VM turns a triggered host

into a non-triggered host. However, if the removal of any VM

in a trigger node couldn’t turn the trigger host into a non-

trigger host, then all tenant VMs in this triggered host are

chosen for the candidate set. For a triggered host ha, we

identify the candidate set as (3).

) ,

(max{ ,0}),

, (max{ ,0

(

1,2, , .

1,2, , ,}),

) ,

, (max{ ,0}),

(

1,2, ,

a a
i i

a i
i i

a ia

a a

i i

a i

h h TR

i u

vm A vm

n

n

vm A

s t i

if i u s t iCE

h h TR

if i u s

vm

t ni

∣

∣

The location policy selects the destination host to which the

candidate VM previously selected is migrated. A Host ha in

NTR is said to be feasible if after migration its capacity

constraint Ca is not violated. For any avm CE the location

policy determines the set of potential destination hosts from

the feasible hosts in NTR set. Since we attempt not to increase

the number of triggered nodes after the migration of VMs, a

feasible node can be a potential destination node only if the

VM migration wouldn’t turn it into a triggered node. The set

of potential destination hosts for any candidate VM

avm CE is shown in (4).

(max{ ,0}) ,(

1,2, , ,)(,

.

i

i
a

si

a a ic

a

a

vm

n A vm

NTR

h i u t

EP i h

h

,)∣

This policy then associates a cost with each (vmβ, ha). The

cost is denoted as the sum of the resource requirements of vmβ

divided by the residual capacity on n dimensions of the

potential destination host ha. It indicates that a host with scarce

remaining resources exhibits a higher cost. The formal load

balancing cost function for a pair of migration (hsrc, hdst, vmβ)

can be defined in equation (5).

1

(, ,)
n

LB src dst

i

i

i

dst

s
h vCost h m

f

where vmβ resides on hsrc which belongs to TR, hdst belongs to

NTR, s
i
β denotes resource demands of vmβ over each resource

dimension i, f
i
dst denotes the available resource of hsrc, and n

denotes the total number of machine resources. For the

candidate VM avm CE , the location policy selects a

destination host out of the potential destination host set

according to cost. We can apply one of the strategies in the

best-fit, first-fit, worst-fit and the relaxed-best-fit [4] to

determine the destination host. With the best-fit, we select a

destination host with the smallest cost. Thus, the potential

destination host with higher cost is less likely to be selected as

a destination for the candidate VM. However, it requires a

linear search from a set of potential destination hosts. Thus,

the relax-best-fit exhibits a better search time by investigating

the smallest cost from a much small set of the potential

destination hosts which are randomly chosen from the original

potential destination hosts. With the relaxed-best-fit, it also

reduces the chance of picking the same best potential hosts

among different VMs and thereby increases the number of

valid edges in weighted bipartite graph. NABM applies only

relaxed-best-fit (RBF) as in [4].

Fig. 4. An illustration of our WBG

For a candidate VM in CEa, relax-best-fit select a

destination host to form an edge in EPa. Since multiple

candidate VMs residing at the same host could select the same

destination host, it causes multiple edges between triggered

and non-triggered nodes. We discard all such edges except for

the edge with the smallest weight. Fig. 4 shows an illustration

of WBG with two triggered nodes and three non-triggered

nodes. Since candidate VM 1 and VM 2 in the Trigger node 1

select the Non-Trigger node 1 as their potential destination

host, two potential edges associated with the weights are

formed between the Trigger node 1 and Non-Trigger node 1.

However, the solid edge with the less weight than the dotted

edge, the dotted edge is discarded from our final weighted

bipartite graph. For any node pair, the edge set is computed as

(6).

(,)
((,

((, ,) (, ,))),

,

,

,src dst src dst

j

LB src dst j LB src dst

j src

h h h h
vm j

E
Cost h h Cos

TR NTR
vm

vm vm

vm

t h h

Cv Em

∣

Finally, we construct a weighted bipartite graph:

G=(V,E,W) where V TTR N R and E is the edge set

obtained from (6), W is the cost function defined in (5).

After constructing the WBG, NABM applies the Hungarian

algorithm [12] to solve the minimum weighted matching

problem. Since the Hungarian algorithm solves the instance of

WBG with perfect matching, NABM must ensure that the WBG

created above has an equal number of nodes for TR and NTR.

Thus NABM algorithm adds pseudo nodes to either TR or NTR,

whichever one has the smaller number of nodes, until they

have the same number of nodes. Pseudo edges associated with

a significantly large value also are added from a pseudo node

to all nodes in the other set. Based on the outcome of each

match from the Hungarian algorithm except for the pairs

connected with pseudo edges, NABM migrate VMs from

triggered nodes to their corresponding non-triggered nodes in

parallel for balancing load. Compared with sequential

migrations described earlier, NABM not only migrates VMs

concurrently but also prevents from exhibiting the migration

overhead due to contention at the end hosts’ NIC.

NABM iterates the steps of constructing a weighted bipartite

graph, finding its minimum weighted bipartite match, and

parallel migrating the corresponding VMs until either there’s

no triggered node left or the match consists of nothing but the

pseudo edges. We omit the pseudo-code of NABM due to

space limit.

C. Network-aware Extension

In addition to the weighted bipartite match that increases
the total number of VM migration pairs in each round, the
length of the duration between each parallel migration round
also plays an important role in reducing total time till balance
load. The time between each round depends on the longest
migration time among all migrations. Since the network hop
distance between two hosts will affect the migration time [7],
we further consider network hop distance in the location policy.
Like [6], we assume that the traffic patterns rarely change in
the production data center. Even though the traffic distribution
could be highly uneven, a balanced traffic distribution could
still be obtained in the data center network. For example, the
cloud operators could reassign traffic flows among
communicating VMs via equal-cost-multiple-path (ECMP) [18]
or a centralized network controller such as NOX [19].

Under even traffic distribution assumption, VM migration
between end hosts with long network path exhibits a higher
probability of long network delay. According to (7), it indicates
that the migration time is proportional to the size of VM
transfer memory and the communication distance while being
disproportional to the bottleneck of end hosts’ NIC bandwidth.
NABM extends the previous cost function in (5) to account for
migration cost which is related to the network hop distance and
the size of VM transfer memory as defined in (7).

 (, ,) (,).
min(,)

mem

mig src dst src dstbw bw

src dst

s
Cost h h vm D h h

f f

where vmβ resides on hsrc which belongs to TR, hdst belongs to
NTR, s

mem
β is memory volume of vmβ, f

bw
src and f

bw
dst denote the

available bandwidth for VM migration in source and
destination NIC, respectively, and D(i, j) is network hop
distance between Host i and j. An example of D(i, j) is to
account for the hop count between end hosts in some data
center network architectures such as fat-tree [20] and VL2 [18].
This paper implements fat-tree and VL2 as the underlying
network architectures. The extension of NABM takes a
normalized cost of (5) and (7) as in (8).

 (1) ()

((

, , , ,

, ,))

src dst src dst

sr

LB

mig c dst

h h Cost h h vm

Cost h h vm

Cost vm

where is an adjustable parameter for normalizing the

migration cost with load balancing cost; and the α is the
parameter for adjusting the relative importance between the
two costs. For example, it considers no network cost if α is zero.
During constructing the WBG, the edge weight is substituted

with (, ,)src dstCost h h vm

in (8) in the location policy. This

paper conducts a number of event-driven simulation analyses
to study how parameter α affects the time till system is
balanced, the mean VM migration time between each round,
and the application performances in section VI.

V. ENERGY-AWARE BIPARTITE MATCHING LOAD-BALANCING

Power consumption constitutes one of the major costs for
the data center. Thus it is imperative to save energy by turning
off some unnecessary machines. To turn off those machines, all
tenant VMs need to migrate to other active machines. In order
to achieve energy saving while maintaining performances of
running jobs, one has to carefully deal with both the impact of
migration time and uneven workload distribution which will
degrade application performance. This section first defines
energy saving as a machine consolidation problem. Then we
extend the previous NABM load balancing algorithm to turn off
machines.

The problem of machine consolidation is defined as follows.
Given the sets of physical hosts H, VMs V, host capacity C,
available capacity F, and the average target system utilization

 1 2, , , nTU tu tu tu , where n is the number of dimensions of

resources, this paper wants to estimate the minimum number of
hosts to provision for the total resource requirement of VMs
such that the average system utilization is closer to TU. Aside

from aiming to turn off as many machines as possible like first-
fit-decreasing (FFD) bin-packing algorithm in [21], we further
focus on maintaining the load-balanced state. We extend the
NABM algorithm by adding an energy aware policy and name
it as Network- and Energy-aware Bipartite Matching (NEABM)
method.

NEABM first searches for potential hosts to turn off. Then
NEABM applies parallel migration to empty VMs out of those
hosts simultaneously. Specifically, like NABM, NEABM
transforms the machine consolidation problem to a minimum
weight matching problem over a WBG. In addition to choosing
the hosts whose resource utilization exceeds the system
threshold of any dimension of the resources as triggered nodes,
NEABM would force some target machines to remain as
triggered nodes until they empty out all resident VMs in order
to turn off them.

According to the target system utilization set by the
operators, NEABM approaches this target utilization by finding
as many hosts as possible to turn off. Similar to other multi-
capacity bin-packing algorithms which sort the bins in either
increasing or decreasing order according to the squared sum,
maximum load or product of load [21], NEABM searches hosts
to turn off in either increasing or decreasing order of resource
utilization of hosts. For our multi-resource case, the sorting
order will be determined by one resource at a time. If the first
resource utilizations of two hosts are the same, second resource
utilizations are compared and so on. The increasing order of
utilization for multi-resource can be defined as in (9):

1 1 1 1 2 2

1 1 2 2

() (() ()) ...

() () ... (),
a b a b a b a b

k k

a b a b a b

h h u u u u u u

u u u u u u k n

where the notation

denotes the turning off priority order for

any two hosts.

Given target utilization constraint TU, let PM
i
 denote the

total available capacity for all VMs in each dimension of
resources i as in (10).

 , {1,2,..., }
a

i i i

ah H
PM tu c i n

Let VM
i
denote the system requirements of resources i as

the sum over ith resource requirement of all VMs as in (11).

 , {1,2,..., }i i

vm V
VM s i n

Let SL denote a set of candidate hosts to turn off, if they can be
removed without violating the total available capacity under
target utilization constraint. Let PM

i
tmp denote a variable.

Initially the set SL is empty and PM
i
tmp is set to PM

i
.

Depending on either the increasing or decreasing order of

host’s utilization to turn off the hosts, a Host
ah H which is

either least utilized or greatly utilized will be tested to see if

turning off ha would satisfy i i i

tmp aPM c VM for each

dimension of resource i. If it’s true, the Host ha will be added to

SL and update the vector as i i i

tmp tmp aPM PM c . This iteration

stops when removing a host will violate the total available

capacity under target utilization constraint for any dimension of
resources.

Although NEABM could meet the target utilization by
finding a number of potential hosts to turn off, the number of
actual hosts being turned off could decrease as the target
utilization gets larger. When the target utilization gets larger,
the number of potential hosts to turn off also gets larger. It
results in a much smaller room to accommodate the variance of
multiple resources. Thus, it becomes difficult for the VMs that
are resident on the triggered nodes to select a destination host
without violating the system threshold if the system threshold
equal to target utilization. Therefore, we take the system

threshold ti as tui + , where is a small number to give more
room for NEABM to accommodate multi-resource variance.

The value of is determined by the standard derivation of
resource usage under NABM.

Given a SL, NEABM defines a new trigger node set TR as

 ()')a a aSTR h h hL TR ∣(

Hosts not appearing in the TR set are in the NTR set.
Throughout the load balancing process, NEABM ensures that
those triggered nodes from the SL remain triggered nodes
unless all resident VMs are removed. NEABM iteratively runs
the parallel VM migration. It shuts down a machine only if
there are no resident VMs. This process continues until it finds
no valid migration edges from the match.

VI. EXPERIMENTAL EVALUATION

This section studies the effectiveness and scalability of the
NABM and NEABM algorithms by comparing them with the
VectorDot (VD) [4] using the NetworkCloudSim [22]
simulation platform.

A. Experimental Settings

To vary the system scale we simulate with 50~1050 hosts
and 157~3244 VMs. The baseline host is equipped with a
2.8GHz (approximately 12,000 MIPS) quad-core CPU, 4 GB
memory, and 1024 Mbps NIC. The multi-resource and
heterogeneous capacity of each host is generated as baseline
capacity*(1±heterogeneous degree.) The heterogeneous degree
is 0.2. Each VM consumes 12%~25% multi-resource demands
of the baseline host capacity. Each VM runs a large-scale Bag-
of-Task (BoT) application which is independent without need
to communicate with other VMs. The workload consists of
287,712,000 million instructions which take approximately 9
hours to finish for a VM with 8880 MIPS CPU. Typical
examples of such workload are biological computation, data
mining, and scientific engineering applications. The 37% of
hosts are over provisioned, which are considered as overloaded
hosts. The average system utilization along each resource
dimension is approximately 57%. In order to accommodate the
variance of multi-resource load balancing, the triggered node
threshold is set to 75% along each dimension of resources.

For the case of energy saving, the average target utilization
for power saving is from 60% to 80%. In order to study the
impact of the tolerance ratio on power saving, the tolerance

ratio for power saving is set to 0.15 and 0.2 where is a small
number to give more room for NEABM to accommodate multi-

resource variance. While = 0.15 and 0.2, the triggered node
threshold will be set from 75% to 95% and from 80% to 100%
for power saving, respectively. In order to study the effect of
power saving, we take power equation in (1) to measure the
power consumption of the host, where k is set to 0.7 and
thecurrent CPU utilization l is obtained at runtime. Pmax is set to
250 W. The power consumption of the system is obtained by
the sum of power consumption of those hosts not being turned
off over a fixed number of hours (kwh).

For the network parameters, we assume that the workload
in VM consumes on average 57% of host NIC bandwidth. This
bandwidth is reserved and not used by VM migrations. The
network topologies fat-tree and VL2 used in our simulation are
built according to [6]. The network parameter α is set from 0 to

1 with 0.2 increment. While = 0, NABM would not consider
any impact of the network topology. We take a modest value of

network weight equal to 0.6 for the simulation results in Fig.
5, 6, and 7. The available bandwidth of core and aggregate
switch reserved for VM migration is set to 1184 Mbps in the
following experiments. The parameter is determined as

follows. We observe that load balancing cost CostLB in general
is in the range (0, 1.8]. In order to combine the costs of load
balancing and migration, we normalize the migration cost to be
in the range (0, 1.8]. Thus we take as 1.8 divided by the

maximum value of migration cost which is in the range [1000,
2800] in our experiments. For the rest of simulation, we fix

= 1.8/1500.

All the performance results are an average of 10 repeated
runs and obtained at the moment of system convergence. We
use the following metrics to evaluate NABM, NEABM, and VD:

the system utilization and standard deviation of multi-resources
of the hosts, the time it takes for the load balancing process to
reach a balanced state, the number of VM migrations taken
during the load balancing process, the total application
completion time, the number of hosts being turned off, and the
power consumption of the system.

B. Experimental Results

Fig. 5(a), (b), and (c) and Fig. 6(a), (b), and (c) show the
average standard deviation of resource usage of CPU, memory,
network bandwidth, and their average resource utilization,
respectively, for different numbers of hosts. All of NABM,
NEABM, and VD exhibit a lower resource standard deviation

than NOLB, which does not do any load balancing. For the case
of energy saving, the average target utilization for power
saving is 75%. Therefore, NEABM can turn some machines off
to reduce power consumption of the system. As a result,
NEABM has a higher utilization along each dimension of
resources than NABM and VD. NEABM achieves a moderately
higher resource standard deviation than NABM and VD
whilefew numbers of hosts are operating. The differences of
average standard deviation between NABM and VD are less
than 5% which means that NABM still maintains a good degree
of imbalance at balanced states compared with VD.

Fig. 7 (a) shows that the time for NABM and NEABM to get
the system to a balanced state is much less than the time for VD
especially in a data center with a large number of hosts. For VD,
the balance time increases along with increases of the number
of VM migrations. This is because VD sequentially migrates
one VM at a time. In contrast, NABM and NEABM
concurrently migrate VMs according to the number of
independent matching pairs. NEABM takes more time than
NABM to reach system balance. Fig. 7(b) shows that NEABM
takes more migrations until all resident VMs of the selected
hosts are emptied. While the average number of VM
migrations per round for VD is constant (equal to 1), the
average number of VM migrations per round for NABM and
NEABM increases as the number of hosts increases as shown
in Fig. 7(c). This is because as the number of hosts increases,
the matching pairs in the minimum weighted matching also
increases. Fig. 7(d) shows that the total application completion
time of the NABM algorithm is better than VD by 1%, 3%,
5%,7%, 9%, and 10%, respectively, under different numbers of
hosts. This is because NABM handles multiple overloaded hosts
at a time, decreasing the load on those hosts and thus
decreasing the degree of resource contention amongst the
applications running on the VMs. In contrast, VD handles only
one trigger node at a time and the algorithm needs to spend a
longer times to decrease the amount of trigger nodes. When the
number of hosts is increased, there are more VMs in the
hotspot competing for the resources. For VD, it will take more
rounds (i.e. time) to alleviate the hot spot. Besides, NABM
achieves a slightly better throughput than NEABM because
NABM takes less time to reach a balanced state.

Fig. 8 shows the VM migration time and the time it takes to
reach a load balancing state under different weight of network

parameter . As the weight of the network parameter

Fig. 5(a). STD of CPU utilization Fig. 5(b). STD of memory utilization

Fig. 5(c). STD of network utilization Fig. 6(a). Average CPU utilization

Fig. 6(b) Average memory utilization Fig. 6(c). Average network
utilization

increases, NABM can select more hosts with shorter paths to
migrate VMs for both fat-tree and VL2 as shown in Fig. 8(a)
and 8(b). Fig. 8(c) shows that the time till the system reaches

the balanced state is reduced as the network parameter
increases. It’s because migrating VMs along a shorter path
could improve the mean migration time. Especially, compared
with no network cost or very small network cost cases,

considering the network hop distance (> 0.2) saves us more
than half of the time to they take to reach a balancing state.
With the decline of migration time, network-aware further
improves application performances as shown in Fig. 8(d).
However, large network parameter value could still hurt the
time till the system reach balance and application performance.

This is why we pick network weight equal to 0.6 in our
previous experiment setting. Fig. 8(e) shows the standard
deviation of CPU utilization verse network weight while
NABM and NEABM reach a balance state. When network

weight increases, the standard deviation of CPU utilization
increases. It indicates the tradeoff between VM migration time
and load balancing degree.

To compare the effect of power saving under a different
system scale, we fix the power measurement interval to be 100
hours in all cases. During the measurement interval, we ensure
that the batch running at each VM still consumes machine
resources. Thus the dynamic power of power equation (1) will
not become zero. Fig. 9 shows that the power consumption for

NEABM. NEABM saves, especially when the system scale gets
large. This is because NEABM consumes the fewest static
power as it turns off a large number of hosts.

Next, we study how average target utilization and the

tolerance ratio of NEABM would affect the number of
machines being turned off. In addition, since NEABM
approaches the target utilization by first searching for potential
hosts to turn off followed by applying parallel migration to
empty VMs out of those hosts, we would like to know the ratio
of selected potential machines to turn off over the exact number
of turned off machines. In all the following experiments, the
initial number of hosts is 450 hosts. In Fig. 10, we refer to the
number of selected potential machines to turn off and the exact
number of machines to turn off as Theoretical and Real,
respectively. Fig. 10(a) and 10(b) show the number of

machines to turn off with different tolerance ratio. The gap
between Theoretical and Real number of turned off machines

becomes closer as the tolerance ratio increases from 0.15 to
0.2. This is because increasing the room for accommodating
the multi-resource variance also increases the chances for the
VMs in potential turn off hosts (trigger hosts) to be migrated to
non-trigger hosts without violating the system threshold. The
selecting order from the least loaded machines first to turn off
could actually turn off more machines than selecting from the
most loaded machines first while the average target utilization
is below 75% as shown in Fig. 10(a). This is because when the

Fig. 7(a) Total time taken to reach a
balanced state

Fig. 7(b) Number of VM migrations to
reach a balanced state

Fig. 7(c) Number of average VM
migrations per round

Fig. 7(d) Total batch completion time
in different number of hosts

Fig. 8(a) Fat-tree: the number of VM
migrations with different hop count

Fig. 8(b) VL2: the number of VM
migrations with different hop count

Fig. 8(c) Total time taken to reach a
balanced state in fat-tree and VL2

Fig. 8(d) Total batch completion time
in fat-tree topology

Fig. 8(e). STD of CPU utilization in

different network parameters
Fig. 9. Power consumption of system in

different number of hosts
Fig. 10(a). Number of machines being

turned off when is 0.15
Fig. 10(b) Number of machines being

turned off when is 0.2

average target utilization is below 75%, the number of
Theoretical machines to turn off is also small. Since there are
fewer VMs to empty out from lightly utilized machines than
from overloaded machines, the least load first doesn’t take a
large number of migrations to empty out machines compared to
selecting order from the most load first. However, when the
average target utilization is greater than or equal to 75%, the
least load first perform worse than the most load first in term of
number of machines to turn off. Although the least load first
still takes few migrations to empty out each selected potential
host, it also selects a large number of non-trigger nodes to be
trigger nodes. Thus it could lead to a few number of trigger
nodes not being turned off. Fig. 10(b) shows that with a higher

tolerance ratio , the real number of turned off machines is
close for both cases as the average target utilization is below or
equal to 70%. As the average target utilization is greater than
70%, the exact number of turned off machines for selecting
from the most load first is greater than selecting from the least
load first. The reason is similar to the trend with Fig. 9(a)
described earlier.

 Fig. 11(a) and 11(b) show the respective power consumption
for 10(a) and 10(b), respectively. The power consumption is
measured over a power measurement interval of 9 hours. As
the target utilization increases, each host in the system could
afford more workloads and thus NEABM could turn off more
machines, thereby the power consumption also decreases. As it
was shown, deciding which sorting order to turn off machines
also allows NEABM to achieve better power efficiency.

VII. CONCLUSION & FUTURE WORKS

We propose a network-aware multi-resource load-balancing
scheme using a parallel VM migration. We transform the
parallel VM migration to a minimum weighted matching
problem of a weighted bipartite graph in a cloud system. Our
algorithm migrates VMs parallel with each other to minimize
the time to get the system to a balanced state and thus increases
the throughput of overloaded hosts. Since the network hop
distance between two hosts will affect the migration time, we
further consider network hop distance into our cost function. In
addition, since power wastes in the cloud data center are
mainly due to the idle power at low utilized hosts, in order to
save energy while preserving multi-resource load balancing,
we extend our load balancing algorithm to turn off as many
machines as possible. Simulation results show that our NABM
algorithm improves the throughput on overloaded machines up
to 10% compared with VD. Our energy-aware method saves up
to 38% power consumption without degrading the application’s
completion time. In the future, we will take network bandwidth
into consideration. In order to avoid multiple migrations

sharing a same network link, a greedy algorithm will be applied
to select one VM migration pair at a time until no more
migration pair. However, the VM migrations still can be
performed in parallel.

 REFERENCES

[1] T. Chieu, A. Mohindra, A. Karve and A. Segal, “Dynamic Scaling of
Web Applications in a Virtualized Cloud Computing Environment,” in
ICEBE, 2009.

[2] Y. Zhao and W. Huang, "Adaptive distributed load balancing algorithm
based on live migration of virtual machines in cloud," in Fifth
International Joint Conference on INC, IMS and IDC, 2009, pp. 170-175.

[3] M. Randles, et al., "A comparative study into distributed load balancing
algorithms for cloud computing," in IEEE 24th International Conference
on Advanced Information Networking and Applications Workshops,
2010, pp. 551-556.

[4] A. Singh, et al., "Server-storage virtualization: integration and load
balancing in data centers," in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008, p. 53.

[5] V. Shrivastava, et al., "Application-aware virtual machine migration in
data centers," in Proceedings IEEE INFOCOM, 2011, pp. 66-70.

[6] X. Meng, et al., "Improving the scalability of data center networks with
traffic-aware virtual machine placement," in Proceedings IEEE
INFOCOM, 2010, pp. 1-9.

[7] H. Xu and B. Li, "Egalitarian stable matching for VM migration in cloud
computing," in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2011, pp. 631-636.

[8] S.-H. Lim, et al., "Migration, assignment, and scheduling of jobs in
virtualized environment," ACM USENIX workshop HotCloud, 2011, vol.
40, p. 45, 2011.

[9] K. Ye, et al., "Live migration of multiple virtual machines with resource
reservation in cloud computing environments," in IEEE International
Conference on Cloud Computing, 2011, pp. 267-274.

[10] D. Arora, et al., "On the benefit of virtualization: Strategies for flexible
server allocation," in Proc. USENIX Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services
(Hot-ICE), 2011.

[11] M. Bienkowski, et al., "Competitive analysis for service migration in
vnets," in Proceedings of the second ACM SIGCOMM workshop on
Virtualized infrastructure systems and architectures, 2010, pp. 17-24.

[12] H. W. Kuhn, "The Hungarian method for the assignment problem,"
Naval research logistics quarterly, vol. 2, pp. 83-97, 2006.

[13] B. Li, et al., "EnaCloud: an energy-saving application live placement
approach for cloud computing environments," in IEEE International
Conference on Cloud Computing, 2009, pp. 17-24.

[14] R. Buyya, et al., "Energy-efficient management of data center resources
for cloud computing: A vision, architectural elements, and open
challenges," PDPTA, 2010.

[15] Xen. Available: http://www.cl.cam.ac.uk/research/srg/netos/xen/

[16] SPECjvm. Available: http://www.spec.org/

[17] K. P. Bubendorfer and J. H. Hine, "A compositional classification for
load-balancing algorithms," technical report, No.CS-TR-99-9, 1998.

[18] A. Greenberg, et al., "VL2: a scalable and flexible data center network,"
in ACM SIGCOMM Computer Communication Review, 2009, pp. 51-
62.

[19] NOX. Available: http://www.noxrepo.org/

[20] M. Al-Fares, et al., "A scalable, commodity data center network
architecture," in ACM SIGCOMM Computer Communication Review,
2008, pp. 63-74.

[21] W. Leinberger, et al., "Multi-capacity bin packing algorithms with
applications to job scheduling under multiple constraints," in
International Conference on Parallel Processing, 1999, pp. 404-412.

[22] S. K. Garg and R. Buyya, "NetworkCloudSim: Modelling Parallel
Applications in Cloud Simulations," in Fourth IEEE International
Conference on Utility and Cloud Computing, 2011, pp. 105-113.

Fig. 11 (a). Total power consumption

when tolerance ratio is 0.15
Fig. 11 (b). Total power consumption

when tolerance ratio is 0.2

